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Abstract~We consider the eversion problem for compressible hyperelastic isotropic thick-walled
cylinders. We give a new strain-energy function for a highly compressible material that admits an
exact solution to the problem with point-wise end conditions. Previously, only averaged loads could
be accounted for. Secondly, we investigate the bifurcation problem for a wide range of material
models. We find qualitively similar results to those obtained for incompressible materials. While
thin-walled cylinders can be everted into other right circular cylinders if the wall-thickness exceeds
some critical value, bifurcation into non-cylindrical shapes is possible. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

In a recent paper, Haughton and Orr (1995) considered the basic defonnation and bifur
cation of everted incompressible elastic cylinders. In particular they found that if a right
circular cylinder is thin enough then it can be everted into another right circular cylinder,
subjected to zero tractions on the curved surfaces, provided that the ends are subjected to
a zero resultant traction. (If zero pointwise tractions are specified on the ends then the ends
of the everted cylinder are belled out and exact analytic solutions cannot be obtained.)
However, if the cylinder is thicker than some critical value the everted shape will not be
cylindrical. The tube undergoes a bifurcation on eversion and will collapse into some non
symmetrical configuration.

The aim of this paper is to investigate the consequences of compressibility. To this end
we concentrate largely on the class of Varga materials introduced by Haughton (1987) and
independently by Carroll (1988). These strain-energy functions are simple enough to allow
significant progress to be made analytically but retain sufficient generality to model a wide
range of material behaviour. In particular it is possible to choose parameters that will give
incompressible Varga materials at one end of their spectrum and infinitely compressible
materials at the other end. The Blatz-Ko (1962) material and one other are considered for
comparison.

We start by giving a fonnulation of the equilibrium equations, assuming that the
everted shape will be cylindrical. This basic eversion problem for compressible materials
has not received much attention, in contrast to the equivalent problem for incompressible
materials, see Rivlin (1949), Chadwick (1972) and Chadwick and Haddon (1972) for
example. However, Carroll (1988) has shown, in passing, how the equilibrium equation
can be reduced to a quadrature in the case of Harmonic materials. Also, Carroll and
Horgan (1990) have obtained an exact solution to the equilibrium equation in the case of
a Blatz-Ko material but neither boundary conditions nor end conditions were considered.
Here we show that a particular material model allows an exact solution to the eversion
problem with pointwise zero tractions applied to the ends of the cylinder. The strain--energy
function that allows this solution is highly compressible and could be considered as an
alternative to the Blatz-Ko model. For incompressible materials Chadwick (1972), Chad
wick and Haddon (1972) and Adeleke (1983) were able to give significant results concerning
the existence and uniqueness of the everted shape (within the set of right circular cylinders,
non-cylindrical shapes were not considered). Unfortunately, we have not been able to make
any general progress on this problem for compressible materials, although computation of
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the everted (cylindrical) shape proves to be straightforward for the materials considered
and the exact solution obtained is clearly unique.

After a discussion of the basic eversion problem for Varga and Blatz-Ko materials we
briefly give a derivation of the incremental equations to look for possible bifurcation modes.
The resulting systems of homogeneous equations are solved for critical values of the radius
ratio of the cylinder by using the compound matrix method (see Appendix for details). This
method has been shown by Haughton and Orr (1995) to be far superior to other methods
commonly used in elasticity for bifurcation problems. The bifurcation results are presented
graphically to show the effect of other parameters, aspect ratio and compressibility on the
different modes of bifurcation. In particular we show that the results for compressible
materials are qualitatively similar to those for incompressible materials, see Haughton and
Orr (1995), irrespective of the bulk modulus of the material. That is, there exists a critical
thickness ratio for a tube of a given material. Thinner tubes may be everted into other right
circular cylinders. However, for tubes with a thickness ratio in excess of the critical value a
bifurcation into some complicated buckled shape will occur upon eversion and the cyl
indrical solution (which still exists) will not be seen. For all materials and parameters that
we have considered the critical thickness ratio (undeformed inner radius over undeformed
outer radius) is always less than 0.55. We find that the aspect ratio of the cylinder is
relatively unimportant, all but unrealistically short tubes behave as if they were infinitely
long. The post-bifurcation problem to determine the collapsed shape of the cylinder is not
considered here.

Finally, we discuss the results in the light of the experimental results on the eversion
of tubes give in Truesdell (1978).

2. EVERSION

Suppose that the undeformed compressible isotropic homogeneous elastic tube occu
pies the region

o< A ~ R ~ B, 0 ~ °~ 2n, 0 ~ Z ~ L, (1)

where (R, 0, Z) are cylindrical polar coordinates. The cylinder is now everted into another
right circular cylinder occupying the region

o~ a ~ r ~ b, 0 ~ 8 ~ 2n, -I ~ z ~ 0, (2)

where (r, 8, z) are also cylindrical polar coordinate and I> 0 is a constant. We note that
the surface R = A is mapped to the surface r = band R = B is mapped to r = a. The
deformation can be described by

r = r(R), e= 0, z = -iZ, (3)

where ). > 0 is a constant such that 1= i.L. The components of the deformation gradient F
referred to cylindrical coordinates are then

dr
- 0 0
dR

F= r
0

R
0

0 0 -).

(4)

The principal stretches of this deformation can be written
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. dr. r
A, = - dR' Ito = R' Ac = A,
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(5)

where the subscripts denote the appropriate directions. For a compressible material the
dilatation J must be positive, and so we can write

r dr
J = det(F) = - i - - > O.

'RdR

The equilibrium equations for the deformation above reduce to the single equation

dO'"
r~ +0',,-0'00 = 0,

(6)

(7)

where the principal Cauchy stresses am 0'00 and a:: can be written in terms of the strain
energy function W = WO." Ao, Ac) of the material as

oW
Jail = i_ j --;;-;-, no sum,

CI' j

(8)

where the subscripts i should be regarded as one of (r, e, z) and we recall that J = A)o)'z'
Ideally we would like to satisfy the point-wise boundary conditions of zero traction on the
entire surface of the cylinder,

and

a,,(a,e,z) = a,,(b,e,z) = 0, 0 ~ e ~ 2n, -),L ~ z ~ 0, (9)

(10)

However, for most material models the pointwise end conditions (10) are not compatible
with the assumed deformation (3). In these cases we follow Rivlin (1949) and all other
authors who have considered the eversion of incompressible elastic tubes and reduce our
requirement to that of zero resultant load on the ends. We replace (10) with the condition

N = 2nrraccdr = 0, z = -i.L,O. (11 )

Since we have insisted r = r(R), we can change variables in (7) so that the equilibrium
equation becomes

dO'" r'
dR + -;(0'" - 0'(0) = 0, (12)

where we have written r' = dr/dR. To solve the problem for r(R) we first guess a value for
i. and b = rCA) (say). The boundary condition (9h can then be used with (12) and (5) to
evaluate the corresponding r'(A). The equilibrium equation (12) can then be treated as an
initial value problem for r(R) and hence we obtain reB) and r'(B). The boundary condition
(9)1 is then evaluated and our initial guess for b is modified to ensure that this is satisfied.
We then evaluate the end condition (11), our initial guess for A is modified to ensure that
this is satisfied. Hence, (11) and (12) with (5) and (8) are two simultaneous equations for
Aand a. These will be evaluated for specific forms of strain-energy functions.

Firstly, we propose a new strain-energy function which allows an exact solution to the
basic eversion problem.
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2.1. Exact solution
Previous investigations of possible everted states have concentrated on incompressible

materials and offered only numerical solutions assuming the approximate end conditions
(11). Here we are able to solve the eversion problem exactly for a highly compressible
material. This has the additional benefit of being a useful check ofany numerical techniques
employed. Considering the strain-energy function

(13)

where J1. > 0 is the ground state shear modulus, we find that the bulk modulus K is given by

K = ~J1. > O.

Since K/J1. = 2/3, we have a very highly compressible material. We note that K/J1. = 5/3 for
the Blatz-Ko (1962) material and so (13) can be thought of as a homogeneous model for
a very soft foam rubber. On substituting (13) into the equilibrium equation (12) with (5)
we obtain

r r 2
r N + - - - + - = O.

R R 2 R

Integrating twice produces

Cl C2 R
r(R) = R"2 + R -RlnR+ 2'

where

(14)

(15)

2B 2 1nB-2A 2 1nA
--------1

B 2 _A 2 '

A 2B 2 In(B/A)
C ------

2 - B 2 _A 2
(16)

are obtainable from the boundary conditions (9). Using (16) and rCA) = b, reB) = a we
find

2A 2 Bln(B/A) 2AB 2 In(B/A)
a = ----- b = -----

B 2 _A 2 ' B 2 _A 2 '
(17)

where a, b are the inner and outer deformed radii, respectively. In particular we note that
b/a = B/A so that the proportions of the cylinder are maintained. It is a straightforward
matter to show that both alB and biB are monotonic increasing functions of A/B, hence,
as the undeformed shell increases in thickness, so does the overall radius of the everted
shell. We now turn our attention to the axial stretch A. to discover the final geometry. For
this particular material it is possible to satisfy the original exact eversion problem where
we insist that the axial stress is identically zero at each point on the ends of the cylinder.
From (13) and (8):

and so the pointwise end conditions (10) are satisfied for A. = I. In passing it should be
noted that this is the only solution obtainable from the approximate end conditions. Finally,
we note that a> 0 for the initial geometry (1) and so the cavity cannot close upon eversion.
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2.2. Varga materials
We consider the class of Varga materials
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(18)

where Ji > 0 is the ground state shear modulus of the material and 9 is an arbitrary function
of the dilation J, as defined above.

This strain-energy form is obtained from a general form for compressible materials
introduced by Ogden (1972) which is a modified form of the incompressible Varga material
where the compressibility is accounted for by the addition of a function 9 of the dilation J.
The explicit form (18) was introduced by Haughton (1987) and independently by Carroll
(1988).

The only constraints on the function g(J) are

g(1) = 3, g'(1) = 1, g"(1) < -~. (19)

These conditions ensure zero energy and zero stress in the undeformed configuration and
a positive bulk modulus respectively.

For explicit calculations we define

I-J-fJ
g(J) = -f3- +3, f3"# 0, (20)

which satisfies conditions (19) provided f3 > -~, f3 "# O. In terms of (18) we can write the
bulk modulus as

(21)

The parameter f3 then allows us to consider materials with the widest possible range of
compressibilities. The incompressible Varga material corresponds to the limit as K - 00

where we also see f3 - 00.

Since exact solutions are not available to the equilibrium equations (12) with (9) and
(11) we illustrate the behaviour of different tubes graphically. In Fig. 1 we investigate the
behaviour of the axial stretch Aas we vary the compressibility of the tube (K/Ji). We can
see that Atends to 1 as f3 tends to zero for a wide range of initial radii ratio AlB. For this

1.10 ~~ _

1.05t'~i~~~i~~~~~Lj~
AlB = 0.95

0.95

0.90

0.85

o 10 15 20 25 30 35

KIll-

Fig. I. Plot of axial stretch Aagainst Kill for a variety of initial thicknesses AlB = 0.2(0.05)0.95.



Fig. 2. Plot of axial stretch i.
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against the undeformed thickness AlB, K'J1 = 0.047 ... 0.81

(f3 = -031(0.02)007).
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o.gL--------------
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Fig. 3. Plot of deformed inner radius aB against K'J1 for a variety of initial thicknesses

A!B = 0.2(005)0.95

value of f3 we have K/ J.1 = 2/3 which corresponds to a highly compressible cylinder. It is
perhaps a coincidence that the exact material (13) has a value K/ J.1 = 2/3 and also gives the
solution A = 1. We also observe that I. == I for A! B -+ 1. This limit coincides with the
membrane limit. For the extensive range of initial radii ratio plotted we see that provided K/ J.1

is not close to zero all deformed tubes qualitatively mimic the behaviour of incompressible
cylinders. This is the effect anticipated by Truesdell (1978). In Fig. 2 we interchange the
roles of initial geometry A/Band compressibility K! J.1 to show how the axial stretch;. behaves
against the undeformed thickness AB for Varga materials of differing compressibilities.

As we expect from Fig. I, if f3 < 0 then i. increases with decreasing thickness whereas
the reverse holds for f3 > o.

We now turn our attention to the deformed inner radius of the everted cylinder. In
Fig. 3 we plot the deformed inner radius ratio a!B against K/ J.1. In this figure we note that
the deformed inner radius a > A unless K/ J.1 « I. Physically we interpret this as the inner
hole of the cylinder expanding for all but very highly compressible materials.
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Fig. 4. Plot of deformed inner radius alB against initial thickness A:B for highly compressive

materials. 1(:/1 = 0.047 ... 0.81.
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Fig. 5. Plot of the deformed outer radius biB against 1(1/1 for a wide range of initial thicknesses
AlB = 0.2(0.05)0.95.
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In Fig. 4 we see that the deformed inner radius ratio alB is monotonic increasing with
the undeformed radius AlB for highly compressible Varga materials. This is in keeping
with the results for the exact solution (15) with (16) and (17). However, we see in Fig. 5
that this is not necessarily the case for the deformed outer radius biB. If we fix the value of
Kill the outer radius may have a local maximum when regarded as a function of the
undeformed thickness AlB as shown in Fig. 6. It is also demonstrated that the local
maximum of biB depends on the compressibility of the material. As the material becomes
more compressible the local maximum disappears.

We now consider the non-dimensionalised stresses in the cylinder. In Fig. 7 we plot
the three principal stresses for Kill = 7/6 (f3 = 0.25) for an initial thickness AlB = 0.25.
Qualitatively we note that the stresses are similar to those observed for incompressible
materials, [1, Fig. 3] for example. We observe that (jrr :%; 0 throughout the tube and is zero
on the ends of the cylinder as required by the boundary conditions (9). Also, the hoop
stress (joo reflects the fact that the tube will have the inner undeformed surface stretched
and the outer undeformed surface will undergo compression. It is known that the eversions
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AlB
Fig. 6. Plot of the deformed outer radius biB against the initial thickness AlB for KI/l = 0.047 ...

0.81.

2

o 0.3_0.4

-I

-2

0.5 0.6

Fig. 7. Plot of the non-dimensional stresses (1""I/l, (1"I/l, (1,,//l, against the undeformed radius R for
a tube with A/B = 0.25, fJ = 0.25 (K//l = 7/6). For R = 0.25, (1""I/l is the upper curve, (1,,//l the

middle curve and (1,,(0.25)//l = O.

of actual tubes with zero applied traction have "belled" ends. We have assumed that the
deformation is of the form (3) and consequently have to apply the approximate end
condition (11). This effectively removes this belling from the ends. The axial loading
required to do this is also shown in Fig. 7. In particular we note that the undeformed inner
portion of the shell is subjected to an axial tension and the undeformed outer portion to an
axial compression.

From Fig. 1 we can see that as {3 moves through zero the nature of the deformation is
changed. We therefore consider, in Fig. 8, the stresses for the same initial thickness
AlB = 0.25 but with KIJl. = 1/6 ({3 = -0.25). As can be seen from Figs 7 and 8 the main
difference in the stresses is in the change in sign of the axial stress (1zz' This change in the
behaviour of the stress is consistent with the axial stretch changing from A> 1 to A< 1 as
{3 moves through zero. Since the deformation undergoes a qualitative change as {3 passes
through zero we study the case {3 -+ 0 analytically. In this limiting case the equilibrium
equation (12) reduces to
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Fig. 8. Plots of the non-dimensionalised stresses U••IIl, U"IIl, U"IIl, against the undeformed radius R
for a tube with AlB = 0.25, {J = -0.25 (Kill = 1/6). For R = 0.25 u..11l is the upper curve, u==11l the

lower curve and u,,(0.25)11l = O.

"r' , 2 (1 2)r - - + (r ) - - - = O.
R r R

As pointed out by Hill (1993), the transformation

(22)

R=e',
du

u = rlR, p = dt'

will always reduce any cylindrical or spherical equilibrium equation to first order, irres
pective of the material model. Applying this transformation to (22) we have

p {~~ +p (~-2)+2(1-2U)} = 2u
2

.

Unfortunately we have not been able to solve this analytically. If we look at the radial
boundary conditions (9) we obtain

2f..l.B ( l)
Aa 1+ r'(B) = 0,

and hence

r' (B) ...... - l, as f3 ...... 0

similarly we find r'(A) ...... -1, and the axial load N we have

2f..l. f8
--y(1-I/A) A rdR=O,

thus, since r(R) > 0, we conclude A = I and from (8) (Tzz == O. We are therefore able to solve
the pointwise boundary conditions for the material (18) with (20) in the limit as f3 tends to
zero.
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Fig. 9. Plot of the deformed outer radius biB (upper curve), the axial stretch ;, (middle curve) and

the deformed inner radius a!B against the initial thickness A!B for the Blatz-Ko material.

2.3. Blatz-Ko material
Blatz and Ko (1962) proposed the strain-energy

(23)

where f.1 > 0 is the ground state shear modulus, based on experiments on foamed poly
urethane rubber. We find

/\1f.1 = 5!3.

Before presenting any numerical results we first note that the eversion of cylindrical tubes
composed of Blatz-Ko material has received some formal attention. Carroll and Horgan
(1990) following the earlier work of Chung et at. (1986) on (non-eversion) cylindrical
problems, provide a rather complicated closed form parametric solution to the problem.
However, no boundary condition nor end conditions were considered.

In Fig. 9 we plot three curves for the axial stretch ;., the deformed outer radius band
the deformed inner radius a for various initial geometries. We see that for all undeformed
thickness ratios AlB the axial stretch A < I with A monotonic increasing in AlB. We can
also see that as A ~ B then A~ I and a ~ b as we would expect for a membrane cylinder.
From Fig. 9 we observe that biB is monotonic decreasing and for a thick cylinder with
AlB = 0.25, say, we find ;.e(b) ~ 5 which represents a large tensile stretch and ).e(a) ~ 0.6
which is a large compressive stretch. We find that the deformed radius alB is monotonic
increasing in AIB. Comparing with Figs 1-6 for Varga materials with a similar bulk modulus
we see that the axial stretch and both deformed radii tend to be larger for the Blatz-Ko
material.

3. THE INCREMENTAL EQUATIONS

For full details and derivation of equations, Haughton and Ogden (l979a) should be
consulted. See also Haughton and Orr (1995) for details applying to the eversion of
incompressible materials. In the absence of body forces the incremental equilibrium equa
tions can be written
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divso = 0,
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(24)

where div is the divergence operator in the current configuration and So is the increment in
the nominal stress referred to the current configuration. Henceforth i will denote an
increment in the quantity x and the subscript zero will denote evaluation in the current
configuration. Since no extra loading is imposed on the surface of the body the incremental
boundary conditions are given by

s6l'\ = O. (25)

where N is a unit outward normal in the reference configuration. The incremental consti
tutive law can be written

(26)

where B is the fourth order tensor of instantaneous moduli in the current configuration, I
is the identity and we have" for Fa. The non-zero components of Bare

(27)

where J is the dilatation. Using cylindrical based vectors e], e2, e3 where the (1,2,3)
directions correspond to (8,z,r), respectively, (24) is expressed as

(28)

where the non-zero values of ei ' ei.k for cylindrical coordinates can be obtained from
Haughton and Ogden (1979b).

We write

(29)

Hence" has components

(u+l:y)/r 1';

" ],,= l-fo/r Ii'- l1'r ~

(uy-v)/r u_ u,

(30)

in cylindrical coordinates where (8, z, r) subscripts denote partial derivatives. Substituting
(26) with (30) into (28) we obtain

(31 )
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where (') denotes differentiation with respect to r. We shall solve these equations by setting

u =f(r)cosm8cosrxz,

v = g(r) sinm8cosrxz,

w = h(r)cosm8sinrxz, (34)

where we assume the incremental displacement variables are single valued with the mode
number m an integer greater than zero. We interpret the parameter rx by insisting that we
have zero incremental end displacement w which gives

rx = nnll, n = 1,2,3, .... (35)

Since the axial mode number n and the length L( = AI) appear only in the combination njL,
we shall regard n as being fixed at unity so that rx is inversely proportional to the length of
the tube. Substituting (34) into (31 )-(33) produces, respectively,

(rB3333 +B3333 )f'Ir+ (rB'1133 - B I313 - BIIII )mglr2

+ (B 1331 +B I133 )mg'lr- (rB~233 -B1122 +B2233 )rxhlr

+ (rB'1133 - B IIII _m2B l313 - rx2r2B2323)flr2 - (B2332 +B2233 )rxh' +B333 J" = 0, (36)

(rB3223 +B II22 + B3223 )rxflr+ (B2233 +B3223 )rxf' + (B 1122 +B 1221 )rxmgjr

- (m2B I212 - rx2r 2 B2222 )hlr2+ (rB3232 + B3232 )h'Ir +B3232 h" = 0, (37)

(BIll I +rB3113 +BI313)mflr2 + (B 1133 +B3113 )mf'lr- (rB3l31 +B313 dg'lr

-B313I g" - (B 1122 +B2112 )mrxhjr+ (m 2BIIII +rB3113 +Bl313 +rx2r2B2121)gjr2 = 0. (38)

The corresponding boundary conditions (25) on the curved surfaces becomes

rg' -g-mf = 0,)
rxf+h = 0, r = a,b.

BI133 (1-m 2)fjr+ B3333 f' +mBI133 g' - rxB2233 h = 0,

(39)

4. COMPRESSIBLE BIFURCATION RESULTS

As for incompressible materials, Haughton and Orr (1995), we find that the mode
number m = I does not give any bifurcation points and so we confine our attention to
m ~ 2. Firstly we consider the class of Varga materials (23). We begin by studying the
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Fig. 10. Plot of the critical values of AlB vs KI J1 for the compressible Varga material for mode m = 2.
LIB = 5,6, 10, 15,20,50.
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effects of varying the length of the cylinder on the critical thickness AlB. In Fig. 10 we plot
the critical values of AlB against the compressibility KIJ1. of the material for various length
to radius ratio LIB. We fix the mode number m to be 2. Immediately it can be seen that as
we increase LIB the critical thickness AlB increases and the bifurcation curves appear to
converge to some limiting curve of critical thickness. We note that although the curves
converge to a limit we do not encounter any points of intersection between distinct curves.
Considering the case LIB -+ 00 analytically for a general material, which in terms of the
incremental deformation (34), is equivalent to G( -+ 0, we find that the incremental equations
simplify and the equation for h decouples. Unfortunately, no analytical solution is forth
commg.

Returning to Fig. lOwe observe that as KIJ1. increases, and hence the material tends
towards the incompressible limit, the bunching effect is more evident. For small values of
KIJ1., and hence more compressible materials, we observe that the critical thickness AlB
obtained has a greater dependence on the initial length to radius ratio LIB ofthe undeformed
tube. We can therefore say that the more compressible a material the greater the length to
radius ratio LIB must be before we may consider it as being effectively infinitely long. This
graph seems to suggest that for a particular value of LIB the critical thickness AlB obtained
is directly proportional KIJ1. and hence to the compressibility of the material.

We can readily see that for KIJ1. > 10 the critical thickness AlB is relatively constant
for shorter cylinders. This corresponds to the results on incompressible materials by Haugh
ton and Orr (1995), where it was shown that for LIB> 5 (approximately) the cylinder
behaves as if it were infinitely long. For actual short highly compressible tubes we may
expect that both the compressibility and the end effects will affect the value of the critical
thickness AlB obtained as a higher proportion of the deformed tube will be non-cylindrical.

Using the above results as our motivation we now examine the effects that the com
pressibility of the material has on the critical thickness AlB obtained upon bifurcation. We
achieve this by varying the parameter f3 which is connect to KIJ1. by (26). As before we plot
KIJ1. to add physical meaning to any results obtained. In Fig. 11 we plot the critical thickness
AlB against the compressibility factor KIJ1. for a wide variety of mode numbers. The most
noticeable feature of the graphs is that for KIJ1. > 5 the critical thickness AlB appears to be
virtually constant for any given mode number. We can also see that as we increase the
mode number m the critical thickness AlB increases and the curves converge to some
asymptotic value. This suggests that the higher mode numbers, and in particular the infinite
mode (m -+ 00), will be the most important as they produce the thinnest bifurcated shells.
If we consider the infinite mode analytically, we simply find that x = O. We therefore
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Fig. II. Plot of the critical values of AlB vs KIJl for the compressible Varga material. Mode numbers
m = 2, 4, 8,10,100,150,200, LIB = 20.
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Fig. 12. Plot of the critical values of AlB vs m for the compressible Varga material for LIB = 20,

P= - 0.24, 0.24, 1.0.

conclude that the infinite mode is not attainable numerically. From Figs 10 and II we note
that the critical value of AlB tends to increase with KI fl. This would seem to indicate that
compressible cylinders are less likely to undergo bifurcation on eversion. In Fig. 11 we see
that it is only for KI fl < 5/2, which corresponds to f3 < 1, where we see any appreciable
change in the critical thickness. Here we find that the critical thickness AlB decreases as the
material becomes highly compressive. Figure II demonstrates that the main area of interest
in our bifurcation curves is for KIfl < 2/3, which corresponds to f3 < 0, and to highly
compressible material forms. We now study this area in more detail.

In Fig. 12 we plot the critical thickness AlB against the mode number m. Here we
vary the compressibility factor KI fl and consider three compressible Varga forms which
correspond to both f3 < 0 and f3 > O. The data for the mode number m is in fact a discrete
set of points and have been joined up for ease of presentation.
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For comparison, we now consider the Blatz-Ko strain-energy form (23). This material
has Kill = 5/3 and is therefore highly compressible. We may therefore expect to be able to
draw comparisons between the bifurcation of Blatz-Ko materials and highly compressible
Varga materials.

In Fig. 13 we plot the critical cylinder thickness A/B against the length to radius ratio
LIB of the cylinder for a range of mode numbers. We can clearly see from Fig. 13 that the
length only effects the lower mode numbers significantly. For m ~ 6 we find that, for
L/B > 5, the cylinder behaves as an infinite one. Indeed, for m ~ g we observe that the
critical radius produced with a short cylinder with L/B = 2 is indistinguishable from the
critical radius produced by an infinitely long cylinder. For the lower mode numbers (m ~ 5)
we see that as we decrease the length of the tube the critical radius at which the tube
bifurcates decreases dramatically. However, this is not important as for very short highly
compressible tubes we would expect the end effects to playa significant role, We also
observe that, as m increases, the critical radius A also increases and thus we would expect
the higher order (m --> (0) mode numbers to be the most important. We are therefore able
to consider all tubes to be effectively infinitely long.

Another point of interest is the non-monotonic increasing relationship between the
mode number m and the critical thickness A/B. However, A/B is monotonic increasing in
L/B for a particular mode number m. We observe that the lower mode numbers (m = 2,3)
intersect several of the higher order mode number curves. This behaviour was not evident
in the bifurcation of the highly compressible Varga forms where we found no intersection
of curves. Although we may expect similar behaviour due to the comparable com
pressibilities of the materials it must be stressed that both materials are governed by different
strain-energy functions and that it is these functions that determine the bifurcation criteria,

In Fig, 14 we focus our attention on the relationship between the critical radius AlB
and the mode number m. Here we consider a Blatz-Ko tube with L/B = 20, The first thing
we note is the existence of multiple bifurcation points for any given mode number. It should
however be noted that this is a discrete set of points and that the lines are just to give a
representation of the data, We hence place no importance on the anomalous line. From
the graph it is clear that as we increase m, more bifurcation points are produced and the
value of the critical radius increases, We would expect the uppermost curve to be the most
important since all tubes thicker than this will be unstable. The minimum turning point on
the upper curve is explained by consulting the previous figure where we see that for small
mode numbers the bifurcation curves cross each other.
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Fig. 15. Plot of the critical values of AlB vs LIB for the Exact Solution material. Mode numbers
m = 2(1)10, 15(5)50, 100(25)200.

Finally, the "exact" material is defined in (13) and has Kill = 2/3. As before we will
compare the bifurcation results to those obtained for other highly compressible forms. Here
we first consider the effect of the length to radius ratio on the bifurcation modes produced.
In Fig. IS we plot the critical thickness AlB against the length to radius ratio LIB for a
selection of mode numbers m.

The uppermost curve corresponds to m = 200. We can see that the critical value of
AlB is then monotonic decreasing with the mode number m until m = 5. For low mode
numbers (m < 4) we see that the picture is not clear. Considering m = 2 we see that as the
cylinder becomes longer the critical initial thickness at which the tube bifurcates appears
to be monotonic increasing. In the case of m = 3, we see that for LIB> 10 the cylinder can
be regarded as infinite. These small mode numbers produce results which are similar to the
Blatz-Ko material, see Fig. 13. As we increase m (m> 5) we see that for LIB> 5 the
cylinder behaves as an infinite one. This result ties in with the results for incompressible
materials. Again we would expect end effects to play an important role in cylinders with
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LIB < 5. We also observe that as the mode number m is increased the critical thickness,
AIB is monotonic increasing with no maximum occurring for m < 200. This is not too
surprising as the incompressible Varga material does not attain a local maximum until
m = 200,000. Unfortunately we are not able to consider m > 200 for the "exact" material
as the numerical method breaks down. The numerical method, as described in the Appendix,
requires some complicated function of the material model, deformation and incremental
displacement Xo to be zero. However, as mentioned above, the limiting case m - 00 gives
only the trivial solution Xo = 0 and so, in the limit as m - 00, the numerical method will
predict bifurcation points everywhere. As m gets "large" the numerical method unavoidably
starts to give spurious results. We only present results here that are far removed from this
problem.

In Fig. 16 we shown how the critical thickness behaves as a function of the mode
number m. Here we plot only the uppermost values of AlB for any given mode number.
We consider a length to radius ratio of LIB = 50, which is effectively infinite. This is
comparable to the uppermost curve in Fig. 14 for the Blatz-Ko material. There is a sharp
spike (near the origin in Fig. 16) corresponding to the mode m = 2 bifurcation curve
crossing the mode m = 3 bifurcation curve as shown in Fig. 15. This is also consistent with
the low mode numbers for the Blatz-Ko material. We can also see that AlB is monotonic
increasing in m and appears to be bounded above.

From Fig. 16 we can say that the maximum critical thickness AlB < 0.550. On inspection
of Fig. 12 we see that as m - 00 the maximum critical value of AlB ~ 0.425 for the
compressible Varga material. From the uppermost curve in Fig. 14 we find that the
maximum critical thickness for the Blatz-Ko material is approximately AlB ~ 0.430.

Since the exact solution material has the greatest value of critical thickness it will
undergo a spontaneous bifurcation for the thinnest shells. We also find the compressible
Varga material has the thickest initial geometry before it experiences any bifurcation modes.
If we consider the compressibilities of the three material classes we do not obtain any
correlation between the compressibility of the material and the cylinder thickness necessary
to produce bifurcation. As discussed before, we are interested in the upper-most bifurcation
curves because they produce the greatest values of the critical thickness AlB. The com
pressible Varga material has a very wide range of possible compressibilities and supports
the eversion of the thickest shells before we reach a bifurcation point. This holds for any
value ofKl1-l and hence any compressibility. We expect that any cylinder thicker than these
values will undergo bifurcation upon eversion. We find that the exact solution material will
produce bifurcation modes for the thinnest cylinders. It may be significant that this material
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solves the theoretical problem exactly and does not require any loads to satisfy the end
conditions.

5. CONCLUSIONS

We have shown that compressible elastic cylinders may undergo a spontaneous bifur
cation into a non-cylindrical shape upon being everted. The qualitative results show that,
for this problem, compressible cylinders behave in the same way as incompressible cylinders,
except for the very highly compressible materials where there are some qualitative differ
ences in the basic deformation of the shell. However, even for very compressible materials
the critical radius ratio for the existence of bifurcation remains low. We have also shown
that there is a very rapid transition from very short cylinders to those that are effectively
infinitely long, in effect all cylinders with a aspect ratio LIB ~ 5 can be regarded as infinitely
long. This suggests that only reasonably thick-walled cylinders (AlB ~ 0.5) will lose the
cylindrical shape on being everted. This is in contrast to the experimental result reported
by Truesdell (1978) where a foam rubber cylinder with radius ratio AlB = 5/6 underwent
a bifurcation upon eversion.

To explain this apparent discrepancy we must investigate the differences between the
theoretical analysis given in the paper and the experimental result. Firstly, the theoretical
eversion problem uses approximate end conditions to simplify the analysis which will
obviously introduce some error. However, we do have some evidence to suggest that this is
not a significant error. In Section 2.1 we have found a material model (13) that allows an
exact solution to the basic eversion problem, we can also say the same of the Varga material
as f3 ~ O.

These materials are highly compressible and so we might expect them to provide a
reasonable model for the material used by Truesdell (1978). However, when we consider
the bifurcation problem for the exact material we find that the critical radius ratio still
bears no comparison with the cylinder used by Truesdell (1978), see Fig. 16, although it is
interesting to note that the critical radius ratio for this material is higher than that of other
equally compressible materials that satisfy only the approximate end conditions.

If, for a moment, we consider thick-walled (incompressible) elastic cylinders subjected
to an external pressure we know that only a very modest change in outer radius is required
before the cylinder collapses, Haughton and Ogden (I 979b), Table 1, for example. It seems
likely that we need to reduce the everted outer radius of the cylinder to induce the required
bifurcation for thinner walled cylinders; this point is also illustrated in Haughton and Orr
(1995), Fig. 1. We have conducted our own very limited experiments on a thick-walled
elastic foam paint roller (AIB = 0.27). On everting the cylinder there were several interesting
features. The belled ends were very prominent but were confined very much to the ends of
the cylinder, at least 95% of the everted cylinder being a right circular cylinder. Secondly,
the everted outer radius of the cylinder was much smaller than the theory given here would
predict and the everted inner radius was reduce to zero, something that we have shown
above cannot happen, at least for Varga, Blatz-Ko and exact materials, see Sections 2.1,
2.2 and 2.3. This would seem to suggest that the required reduction in outer everted radius
would be achieved if we had a more accurate constitutive model of the material. We have
considered a wide range of strain-energy functions and this does not offer a solution. We
recall that a highly compressible foam rubber is modelled by an "equivalent" homogeneous
material, see Blatz and Ko (1962) for example. However, if we consider the behaviour of
foam materials a little more closely we see that a compression of such a material requires,
essentially, the bending of the matrix "walls" surrounding the voids in the overall material.
This requires relatively little effort and so give a highly compressible material. However, to
produce, say, a uniaxial extension of such a material we would require to rotate and then
subject the matrix material to a uniaxial extension which would require a significantly
greater effort. Hence a foam rubber material would be expected to behave differently in
extension and compression. For many deformations this will not be important and the
usual homogeneous model will give both qualitative and quantitative results. However, for
the eversion of a cylindrical tube, the everted outer radius is in a state of azimuthal tension
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while the inner everted outer radius is in a state of compression. If the material is actually
stiffer in tension than the homogeneous model suggests then the outer everted radius would
be smaller than that predicted by the homogeneous model, precisely the effect that we are
looking for.

Materials that behave differently in tension and compression have been considered by
Green and Mkrtichain (l977a). Such materials can be thought of as a combination of two
homogeneous models, one for the material in a state of pure dilatation, one for pure
compression, and two transversely isotropic materials, one when two principal stretches
are greater than unity, one when two principal stretches are less than unity, with appropriate
matching conditions. An explicit model of such a linear elastic material has been given by
Green and Mkrtichain (l977b), but there are no models for finite elastic materials. We aim
to consider the eversion of cylinders composed of such materials in a separate paper.
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APPENDIX

In this appendix we describe the numerical methods that have been used to solve the incremental equations
(36)-(38) with boundary conditions (39). The general method is outlined by Lindsay and Rooney (1992) where
other references can be found.

Firstly, consider the general homogeneous problem of 2n first order ordinary differential equations written
in vector form

dy
d
- = A(x.,'ly, a'S x 'S b.

x
(A.l)

where y is a 2n-vector and A is a 2n x 2n matrix depending on the independent variable x and a parameter y. The
homogeneous boundary conditions are evenly distributed between the two ends of the range and can be written
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B(X'f)Y = 0, x = a,

C(x, }')y = 0, x = b,

(A.2)

(A.3)

where both Band Care n x 2n matrices. The aim is to determine values of the parameter (eigenvalue) }' so that
non-trivial solutions exist. This seems to be typical of the problems encountered in both fluids and solid mechanics,
but other cases with an odd number of equations and or an uneven distribution of boundary conditions can be
treated in a similar way. (In some respects an even distribution of boundary conditions over the two ends
constitutes the worst possible case as it involves most work.)

We can always choose n linearly independent vectors y(<1, i = 1,2, ... , n that satisfy all n boundary conditions
at x = a, say. The general solution to (A.l) can then be written

y = I kiy(il,
i= 1

for some constants k I' k" ... , k •.
We define M to be the 2n x n matrix whose ith column is y(i) We then have

y= Mk,

where k is the n-vector (k), k" ... , k.)T For future use we note from (A.I) that

dM
(iX=AM.

(A.4)

(A.5)

(A.6)

Equations (A.I) can be numerically integrated using each of y(il(a), (i = 1,2, ... , n) in turn as initial conditions to
produce solutions y(il(b). The remaining boundary conditions (A.3) then become

.
C(b,}') I. kiy(il(b) = CMk = 0, x = b.

;;;]

The condition for the existence of non-trivial solutions is

det(CM) = O.

(A.7)

(A.8)

If the above n x n determinant is evaluated directly then we have essentially the method described by Haughton
and Ogden (I979b), which has been used successfully for many problems of this type in elasticity. However, this
method has proved to be inadequate for many problems in fluid mechanics, in particular the Orr-Sommerfeld
problem, and also for the elastic bifurcation problems considered in Haughton and Orr (1995) and in this paper.

The compound matrix method avoids the necessity of evaluating a determinant directly which is the source
of numerical instabilities even for very small values of n. The Laplace expansion of det(CM) gives

"C,

det(CM) = I l/Ji<Pi'
i= I

(A.9)

where l/J, and <Pi are n x n minors of C and M, respectively. The summation takes place over all possible n x n
minors of M taking rows of M in ascending order. Given a <Pi' Wi takes the corresponding columns of C. The
compound matrix method takes the set {<p"i = I, ... '"C.} as new set of dependent variables. The differential
equations satisfied by the n-vector,p are determined directly. The derivative of each minor give n n x n determinants
the jth determinant has its j row differentiated and all other rows are unaltered. The differentiated row can be
expressed as a linear combination of the rows of M by using (A.6) and hence as a linear combination of elements
of ,p. The coefficients that are required in this linear combination come from the original coefficient matrix A. The
'·C. differential equations are augmented with initial conditions chosen to be consistent with the original boundary
conditions at x = a. Since M has rank n at least one of the compound matrix variables must be non-zero at x = a.
Having integrated the '·C. equations once only we have the value of q, at x = b. The condition (A.9) can be
expressed as some (often trivial) linear combination of components of q, at x = b with coefficients obtained from
the matrix C. The parameter f is then chosen to ensure that this "target" condition is satisfied. Essentially we
have replaced the evaluation of an n x n determinant and the solution of 2n first order ordinary differential
equations n times with a single solution of '"e, first order ordinary differential equations. The timing of the two
methods is comparable but, as we shall see the second method returns a much higher degree of accuracy.

We now show how the compound matrix method is applied to the incremental equations (36)-(38) with
boundary conditions (39). First we choose

y = (f,f'g,g',h,hf

Equations (36)-(38) can then be written

y' = Ay

where the components of the matrix A have the form

(A.IO)
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(A. II)

the non-zero components are obtained from (36)-(38). The boundary conditions (39) become Cy = 0, r = a, b
where

-I

o
o

o
CJ4

o
o (A.l2)

where the unspecified components can be read off from (39). Since this problem involves six equations with three
boundary conditions at each end of the interval we shall require 6C, = 20 compound variables and we shall
consequently have to solve a system of 20 equations. The compound variables rPi can be defined and a shorthand
notation introduced as follows;

y\l) v(2) V(3l
. I . I

rPl = J,~ll y~2) y~3) =(1,2,3),

y)l) yl21 y\)l,

y\11 y\2) V(3)
• I

rP2 = Yill A2) y~3) =(1,2,4),

y~11 y~2) yi')

(A. 13)

and similarly,

rP3=(I,2,5), cP4 = (1,2,6), rP5 = (1,3,4), rP6 = (1,3,5), cPl = (1,3,6),

cP,=(I,4,5), cP9 = (1,4,6), rP,O = (1,5,6), rPl I = (2,3,4), cPI2 = (2,3,5),

rP13 = (2,3,6), cPI4 = (2,4,5), cPI5 = (2,4,6), cPI6 = (2,5,6), rP17 = (3,4,5),

cPI' = (3,4,6), rPI9 = (3,5,6), rP20 = (4,5,6),

where we just have to take permutation of the integers from 1--6 in groups of three.
The generation of the differential equations satisfied by t/I is a straightforward but lengthy process. Lindsay

and Rooney (1992) have produced a utility that generates standard fortran code for the required equations given
the matrix A. To illustrate the process,

'II) y'121 yTq y\l) y(2) y\31 }/ll y\21 y\'lYI . I . I . I

rP; = Yill )/2) y(3) + y'~ll y'(2) /i'l + All V(2) A31
• 2 .2 . 2 • 2

y~l) V(2) y~3) yl'l y~21 y~3) y'~ll V'(2) y'(31
• J J • J J

V(I) yi2) A" y\l) y\2) V
lll y\') y\2) y\31

. 2 . I

6 6 6
Vii) v(2) AJI + L A2,y}l) L Au y}2) L A2iypl + Yill V(2)

yi
31

. 2 . 2 • 2
i= I i= I i= 1

y\l) J,~21 y~:n .rill y~2) vP ) y~11 v(2) y~31, , • 4

having used (A.IO) and (A.11). Hence,

The other equations are obtained in a similar way. The initial conditions are obtained directly from (39). Choosing
Yh YJ, and Y5 as free variables (other choices are possible but not every combination is consistent with (39)), we
express all of the initial conditions in terms of rP6 = (1, 3, 5). For example,
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.v',I)(a) .1'\') (a) y\JI(a)

e/>, (a) = AI'(a) y)2'(a) AJI(a)

yjll(a) /3'1 (a) vj"(a)

Using (A.3) with (A.12) to rewrite h(a) in tenns of YI(a), YJ(a), y,(a) we have

where

V(3). )

Similarly,

i' = C,2 # O.

which can be written

VII)
. I

y\ll(a) v\"(a) y\,'(a)

e/>,(a) = AII(a) .1')') (a) Ali (a)

y~l)(a) v~"(a) v~')(a)

myjl)/a+y~l)/a

having again used (A.12). The completed initial vector t/I(a) is

t/I(a) = e/>6(a)[-y, -y/a,fj,O,O, 1,0,I/a,O,O, -ym/a,iJ,'1.",6;a-mfj/a,'1.,'/a, -fj'1., -mla,O, -'1., -'1./a],

(A.14)

where e/>6(a) # 0 is arbitrary.
Finally, the target condition is obtained by using the boundary conditions (A. 12) at r = b. Using similar

shorthand notation to that introduced in (A.13) we require

Expanding this detenninant leaves us with the target condition

Cll (e/>7 - re/>9) + CJ 2('1.e/> , - ue/>, -me/>. + e/>I J - re/>I') + c',(re/>20 - e/>19 + '1.re/>, -me/>IO -'1.e/>6)

+c,.(-'1.e/>,-me/>,-q,IS) =0, r=b. (A.15)

The compound matrix method then consists of solving the system of 20 Ist order equations

t/I' = le/>. (A.16)

(say) where 1 is a known 20 x 20 matrix subject to initial conditions (A.14). The bifurcation parameter within the
system is then adjusted until the target condition (A. 15) is satisfied.

The accuracy of the method depends only on the accuracy obtained in the solution (A.16).


